Topology

B. Math. II

Back-paper Examination

Instructions: All questions carry equal marks.

- 1. Let X and Y be spaces and $A \subset X$ be a subspace. Let $f : A \to Y$ be a continuous map. If Y is Hausdorff, then show that there exists at most one extension of f to the closure \overline{A} . Give an example to show that this statement is false if Y is not Hausdorff. Justify your answer.
- 2. Let $\{X_{\alpha}\}$ be a collection of spaces and let $A_{\alpha} \subset X_{\alpha}$. If $\prod X_{\alpha}$ is given product topology, prove that

$$\prod \bar{A_{\alpha}} = \overline{\prod A_{\alpha}}$$

- 3. Define connected space. Let $f: S^1 \to \mathbb{R}$ be a continuous map, where S^1 denotes the unit circle in plane with subspace topology. Show that there exists a point $x \in S^1$ such that f(x) = f(-x).
- 4. Define path connected space. Prove that if U is an open connected subspace of \mathbb{R}^n , then U is path connected.
- 5. Let X and Y be topological spaces and \mathcal{A} be a collection of basic open sets in $X \times Y$ such that no finite subcollection of \mathcal{A} covers $X \times Y$. If X is compact, show that there exists a point $x \in X$ such that no finite subcollection of \mathcal{A} covers $\{x\} \times Y$.
- 6. State the *second countability axiom* for topological spaces. Prove that a metric space with a countable dense subset is second countable.

- 7. Define a regular topological space. Prove that if a space X is regular, then any two distinct points of X have open neighbourhoods whose closures are disjoint.
- 8. State Urysohn Lemma, Urysohn metrization theorem, Tietze's extension theorem and Tychonoff's theorem.